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The problem of a strong point-blast in a perfect gas was solved by 
L. I. Sedov, who found the exact solution for plane, cylindrical and 

spherical waves [l-31. 

L.I. Sedov also formulated the problem of a point-blast in a more 

general ideal medium, and gave the solution for the particular case 
of an incompressible fluid [l]. These formulations and results can be 

used to study the problem of a point-blast in a medium like water. 

In the following we obtain self-similar solutions to the problem 
of a point-blast for three concrete new forms of the equation of 
state of the ideal medium. 

1. In order that the problem of a strong blast in a compressible 
medium have self-similar solutions, it is sufficient that the internal 
energy of the medium satisfy 

(1.1) 

where 4 is an arbitrary function of its argument [1,4]. In this case the 
following relations hold. 

1. ‘Ihe adiabatic equation has the form: 

p=W)x(f-) (1.2) 

where Y(S) is a certain function of the entropy. Below we develop a 
mechanical theory independent of the form of Y(S). Ihe function Y(S) is 
connected with physical properties of the medium, and can be determined 
from additional physical investigations. ‘lhe relation between the 
functions 4(R) and x(R) is defined by 

where C is an arbitrary constant. 
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2. In view of (l.l), the equation of state must have the form: 

where Q, is a function related to V(S) through Y'(s)=P,@[y(s)], 

Let us examine the one-dimensional time-dependent motion of an ideal 
compressible medium. Because of (1.2), the equations of motion have the 

form: 

(1.5) 

where ~=1,2 and 3 for plane, cylindrical and spherical waves,respect- 

ively. 

'Ihe equations of motion do not contain dimensional constants other 

than the density p,. The remaining dimensional constants enter only 

into the boundary conditions. We assume the blast to be concentrated at 

a point (i.e. the energy of the blast is released instantaneously at 

the center of symmetry at time t = Of, and to be strong (i.e. the 

pressure, pI, in the undisturbed medium is negligible compared to the 

pressure at the shock front). In this case the boundary conditions 

reduce to conditions at the shock front 

- PlC = P2 (Q2 - CL P1C2 = P2 + P2 (“2 - 4” (1.6) 

where c is the speed of the shock wave; the subscript 2 denotes 

quantities behind the shock front; 1 in front of it. 

Thus, the problem contains only two quantities with independent di- 

mensions: p, and Eo, [Po]=ML--3, [E,]W.~-I?“*; consequently, as was 

already stated above, the problem has self-similar solutions. In 

this case we can look for the velocity, density, and pressure in the 

form 

2, = f V(h), p = PoR @), p = po g p (1.) 

where rZis the radius of the shock wave: 

(1.7) 

with E a certain constant, with dimension of energy, proportional to 
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the energy of the blast: Eo%T. 

Enploying (1.7) and (1.8), we can transform the shock conditions 

(1.6) to non-dimensional form: 

v2=a(1-g>, P,=6R11/, (1.9) 

From this we will get an equation connecting V, and R, at the shock: 

fh? @2) = 2 (SVJ V,) (1.10) 

Substituting expressions (1.7) for u,p, and p into (1.5), we obtain 

a system of three ordinary differential equations 

(d-V)&1”-&=2(V-1) 

(1.11) 

(1.12) 

(1.13) 

These equations have two independent integrals: the energy integral 

and the adiabatic integral [l] . I n view of the shock conditions (1.9), 

and of the second of relations (1.3), these integrals take the form: 

P= 
(8 - V) RV’2 h= 

[ 

KX (R) “4 
z~v-((6-~‘)Rrp(H)I ’ H (8 - V) P 1 

where 

~=Rz(s+)Ps 
x (R,) 

(1.14) 

(1.15) 

i.e. K is a constant, chosen to make A equal to one on the shock wave. 

If R(V) is known, the integrals (1.14) give two equations for the 

determination of the two quantities, P and A, as functions of V. 
Eliminating h from equations (1.11) and (1.12), we have 

vv 
[ 
(6-V)- g] = (VW + $)[(8 -vp+ I] (1.16) 

Replacing P in (1.16) by its expression in terms of R and V from the 

energy integral (1.14), we get the following equation: 

dR R% (R) 
dl/‘=-X 

(6 -V) (1.17) 
{V[(1-v)V-8]-(6-V)[(1-v)V+1/~(~--)6]R~(R)} 

x {‘,+V” [I - Hz@ (H)] + V [V - (v + 1) S] Rq(R) + (1 - V) (6 - V) R*q*(R)} 
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In this way, the problem is reduced to integrating (1.17 ), after 
which P and X can be found from (1.14). 

l’he behavior of the solution of the system of equations (1.17) and 
(1.14) depends essentially on the character of the singularities of 
equation (1.171, which in turn is determined by the analytic properties 
of the function &R) in the neighborhood of the singularities of 
equation (1.17). 

For the problem of a strong blast in a gas, the function #(R), is 
determined by the relation 

(1.18) 

where y is the adiabatic exponent. 

The exact solution of (1.17), under the condition (1.181, was found by 
L.I. Sedov [ll . In this case the function lti is found by a quadrature; 
for motion with spherical symaetry, we have 

The shock conditions (1.91 give 

From equation (1.19) it can be seen that all the integral curves in 
the RV plane are similar to each other. ‘Ihe solution of the problem 
depends essentially on the parameter y. 

If the function 4(R) has a more general form than given in (1.181, 
the solution of the problem, given by each integral curve, is determined 
by the parameter Rl=~,/~,. ‘Ihe f irst of the shock conditions (1.9) gives 

(1.20) 

For any function +5(R), the parameter R, depends explicitly on the 
parameter R2 ; consequently we will write the expressions for the velo- 
city, density and pressure at the shock front in terms of Rz: 

PZ = ~1 [i + 2R,(p Pa) 1, 

Here 



Strong point-blasts in a coaptessible nediur 5 

In the formulas obtained above there occurs the constant E, which cau 
be expressed in terms of the blast energy Eo (which, in the present 
formulation, is equal to the total energy of the disturbed Odin). If 
the solution can be continued to the center of symnetry, then 

where uu = 2(V -1)R + (V - 3) fv -2). 

If at the center of the blast there is created an expauding cavity of 
radius r*, enclosing a vacuum, we get the following formula instead of 

(1.22): 

(1.23) 

Making use of (1.7) and (1.81, we can transform the- formulas (1.22) 

and (1.23) to dimensionless form: 

(1.24) 

(1.25) 

where h = r /r2, In the problems examined below, the constant Q is 
compute1 fr$ fonuulas (1.24) and (1.25). 

2. It is easy to verify that for any function q!&), equation (1.1’7) 
has the solution: 

At each point of the integral curve (2.11, we have P = w, X = 0. 

Equations (1.14) and (1.17) also have the following two solutions: 

R - arbitrary, V=6,P=O,h=w (2.2) 
V - arbitrary, R = 0, P = 0 (2.3) 

(the value of h in formula (2.3) depends on the behavior of the function 
gS(R) in the neighborhood of the point R = 0). From this it follows that 
in the RV plane, the integral curves for which P > 0 are confined between 
the integral curve (2.1) and the lines V = 6 and R = 0, which give the 
solutions (2.2) and (2.3). 

If the function 4(R) has the form &?) = (R - l)Rf(Rf, where & > 0, 
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f( 1) f 0, the system (1.141, (1.17) has another solution: 

R= 1, 

(if k = 1 and f(l) = 

that case, if f(l) > 

confined between the 

P = -;t; v (6 - V), A=0 or 92 (2.4) 

0 simultaneously, the (2.4) is not a solution). In 

0, the integral curves for which #RI > 0 are 

integral curve (2.1) and the lines (2.21, (2.4). 

Since the internal energy of the medium is zero at every point of 

the integral curve R = 1 (#RI = O), the formulas (2.4) give the solu- 

tion to the problem of a strong blast in an incompressible fluid, which 

was found by L. I.Sedov [l] . The dimensional quantities, velocity, 

density, and pressure are determined in the case of spherical symnetry, 

by the formulas 

3 1 

P = PO (2.5) 

where E’ is a certain const,ant, proportional to the kinetic energy of 

the fluid E’, = 4/25 E’, and r* is the radius of the empty sphere, which 

expands as time goes on. 

3. We will now find the curve of weak discontinuities in the RV* plane; 

on this curve the particle speed relative to the speed of the shock wave 

is equal to the sound speed, i.e. 

dp / dp = (v - c)” 

From this, making use of (1.7) and (1.8), the energy integral 

the adiabatic equation (1.21, and the relation (1.3) between the 

functions t+(R) and x(R), we get 

,T = sn~(H)~1+2R~(H)+V2H*~'(H)-ll 
1- Wcp’ (II) + 2139 (H) (1 + &J(H)) 

(1.14), 

(3.1) 

If 2R2 qi’(R) < 1 f or all values of R, there does not exist a real 

curve of weak discontinuities for the given function 4(R). 

‘Ihe variable parameter X in the function V attains an extreme value 

along the curve (3.1). Consequently, for motion along an integral curve, 

a continuous transition across curve (3.1) is inpossible; the transition 

can be effected only be means of a shock wave. 

4. In the present section and in the two following ones, we will 
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investigate the spherically symmetric case. 
At the present time there does not exist a universally accepted 

adiabatic equation of state for water. Usually this equation is taken in 

the form 
P = y (8) (P” - POX) (4.1) 

with the value of K close to 7 (e.g. ,see [ 51,. 

It is always possible to choose the constant po in such a way that 
(4.1) yields 

x(R)=R”---1 (4.2) 

It can be shown that if the adiabatic equation has the form (1.2), 
and the equation of state the form (1.4), then the expression for the 
internal energy is given by (1.1). and the relations (1.3) hold. Taking 
into account (4.2). the first of relations (1.3) then given an expres- 
sion for +(A): 

RKCC~R$X--l 
‘P(R)= 

(x - 1) R (Rx-- f) 
(4.31 

where C1 is an arbitrary constant. Setting Ci = - K, we have 

P (R) = 
RX --xR+x--1 

(x- 1) R(RW- 1) 

In the neighborhood of the point R = 1 

‘P(R)=$(R--1) [i-+(x+~)(R--)+...I 

and in the neighborhood of R = 00 

9, (R) = (x -*t, R 
[~~~(~~~-~+~..] 

(4.4) 

(4.5) 

(4-6) 

From results of experiments [ 3.71 which give the density and the 
temperature of water under high pressure, we obtained the values 
K = 20/3 for the exponent in formula (4.21, and p. = 0.93894 g/cm3 for 
the density pO occurring in (4.1). 

For simplicity, let us assume that 4(R) has the form 

(4.7) 

In the neighborhood of the point R = 1, the function (4.7) has the 
following asymptotic behavior: 

~(R)=$(R-~)jl-2(11’-~)+...] (4.8) 
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In the expansions (4.8) and (4.5), the first terms coincide. 

The function (4.4) can be approximated by (4.7) with a known accuracy. 

Now let us examine the problem of a strong blast for the function 

(4.7). The system of integral curves of (1.17) is shown in Fig. 1. (The 

heavy line in Figs. 1.5 and 7 represents the curve (1. lo).) 

The curve of weak discontinuities (3.1) Passes through only one point 

(V = 0, R = 1) in the domain of values of (R, V) under examination. The 

equation (1.17) has five singular points in this domain. 

The point C(V = 0.4. R = 1) is a node. In the neighborhood of this 

point we have 

R = 1 + C1 (0.4 - V)‘, P = O.5Y (0.4 - V), A = (5 CIK)O.z (4.9) 

Here C1 is an arbitrary constant, and 

K = 04 - Vz) pz 
Rz (R, - 1) (4.10) 

From the asymptotic form of (4.9) it is clear that the point C 

corresponds to the boundary between the moving fluid and the cavity. 

The point D (V = 0.4, R = =) is a saddle point. Only one integral 

curve, Y = 0.4, passes through it. The point E (V = 2/15, R = 0~) is also 

a saddle point. The only integral curve passing through it is (2.1), 

which, for the function 4(R) in question, is determined by the equation 

0.4 - v 
R = 0.4 - 3v 

(4.11) 

The point F (V = 0.25, R = m) is a node. 

The point A (V = 0, R = 1) is a compound singularity; here we have 

both a node and a saddle point. 

The asymptotic formula for R as a function of V has the form 

V -- 
0.4-V 2R 

(4.12) 

Making use of the integrals (1.14), we can find the values of P and x 

in the neighborhood of point A: 

1= 2.5KC(H-l1)2”” R---l 

L I( 

V ‘18 
--p 

V2 H 0.4 -v 

From these formulas we obtain different asymptotic behavior for 

different integral curves. The asymptotic formulas (4.12) and (4.13) 

the integral curves entering point A, and therefore corresponding to 

node, can be written in the form 

for 
a 
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R = 1+ 5V + 37.5V2 + CzVtJt 

p E - & V--‘la, h = f- 12.51yC~)‘~‘V’~~ 

(Cz is a new arbitrary constant). 

Y 
c 

9 

(4.14) 

Fig. 1. 

We note that the coefficient of V in the expression for R depends on 
the analytic properties of the function f(R) in the neighborhood of 
R = 1, if the function $56(R) is determined by the equation #(R) = %(R -1) 
[ 1 + f(R)], with f(l) = 0. 

It can be seen from (4.14) that the point A corresponds to the center 
of symmetry. The curves entering the point A give a solution to the 
problem, which can be continued to the center of symmetry, where the 
velocity vanishes, while the pressure and the density remain finite. 

Furthermore, the integral curves belonging to the saddle point enter 
the point C, and are separated from the curves entering point A by a 
curve tangent to curve (1.10) at point A: curve (1.10) gives the condi- 
tion at the shock, and in the present case has the form: 

R-_ o-4---2 
2 

2 (0.2 - V,) (4.15) 

For the separating curve, the asymptotic formulas in the neighbor- 
hood of point A have the form: 

R = 1 + 2.5V + 13.75V2, P = v (0.4 - V), h = 0.696 (4.fS) 
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At the center of symmetry there is formed a region of fluid at rest, 

expanding as time goes on, where the density is constant and equal to 

P o, and the pressure vanishes. 

Now let us examine those integral curves which give the solution to 

the problem of a strong blast. As we have noted above, the point A 

corresponds to the center of symmetry (A = Of, and the point C (A = const. 

p = 0) to the boundary of the cavity. From the point (V = 0, R = RI), 

which characterizes the state of the fluid prior to the blast, it is 

possible to get to an integral curve entering either A or C only -by means 

of a jump at point (V2, R2) of the curve (4.15). All integral curves 

leaving points A and C (except for curves V = 0.4 and (4.11) ), enter 

point F. At the point (V = 0.1, R = 1.5) one of these curves is tangent 

to curve (4.15). 

All curves which lie between this integral curve and curve (4.11), 

cross curve (4.15). Consequentiy. each one of these curves, eharacter- 

ized by a given value of the parameter RI, gives the solution to some 

problem of a strong blast in a medium specified by (4.7). Furthermore, 

the parameter RI takes on all values between 1 and =. 

Fig. 2. 

Graphs of the functions v/v2 and p/p2, p/pz, are shown in Figs.2 and 

3; curves labeled 1 correspond to RI = 1.0667, 2 - 1.1250, 3 - 1.1910. 

4 - 1.2921. 5 - 1.3333, 6 - 1.5625, ‘7 - 2.2042. 

Let us examine somewhat more closely the behavior of these functions 

for different values of RI. For RI = 1 we get the integral curve 

R=l, P = 0.51Y (0.4 - V) A = 0 (4.17) 

The formulas (4.1’7) give the solution to the problem of a strong blast 

in an incompressible medium [ I]. In view of (1.7) and (1.8). we get 

formulas (2.5) from (4.17) if we set V = 0.4(r*/rt?. where rr is the 
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radius of the cavity (2.5). Corresponding to this, making use of (1.21) 

and (4.17). we get from (2.5): v/v~+ 00 , p/p2 + do, p/p2 -+ 1. 

The integral curves corresponding to the values 0 < R1 < 1.2921 leave 

the point C and enter point F. crossing the curve (4.15) at two points; 

to each value of R1 there corresponds a point of intersection. These 

curves give the solution to the problem of a blast with spherical cavity 

expanding from the center (curves 1, 2, and 3 of Figs. 2 and 3). 

In the neighborhood of the cavity the fluid behaves as if it were 

incompressible. The compressibility is significant only in the vicinity 

of the shock wave. The ratio of the blast energies for incompressible 

and compressible fluids is equal to 

where h. is the dimensionless radius of the cavity (A, = r*/r2), and 

c1 = E,/E. The ratio (4.18) decreases from one to zero as Ri varies from 

1 to 1.2921. 

Fig. 3. 

Consequently, near the cavity the fluid can be considered incompress- 

ible, with its blast energy given by (4.18). 

The dashed curves of Figs.2 and 3 correspond to curves 1. 2 and 3 for 

the case of an incompressible fluid. In the vicinity of the cavity, 
where they give good approximations to the values of v/vi, p/p*, and 

P/P2 * these curves were used as asymptotes of the correct ones, 

The separating curve (curve 4 in Figs. 2 and 3) corresponds to 

R1 = 1.2921. As h varies from 1 to 0.696, the density decreases to po, 

and the pressure and velocity to zero; for h = 0.696 the fluid goes over 
into a state of rest by means of a weak shock, and the curves therefore 

have a corner at this point.. For h< 0.696 the velocity and the pressure 
vanish, and the density is equal to po; corresponding to this, at any 
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time the mass of the fluid behind the shock front is equal to the mass 

initially in this volume. Thus the separating curve gives the solution 

to the problem of a blast with a region of fluid at rest, expanding 

from the center according to the law r = 0.696 (E/Q,)~‘~ t2j5. 

The curves entering point A and tangent at this point to (4.11). give 

the solution to the problem of a blast for 1.2921 < R< JO (curves 5. 6, 

7 of Figs. 2 and 3). corresponding to which the velocity vanishes at the 

center of symmetry, and the pressure and density are finite. 

If R1*c-= (the blast takes place in a fluid of infinite density), the 

speed of the shock front goes to zero, and the density behind it becomes 
infinite. 

Fig.4 shows the graphs of the functions c1 = Eo/E and E,' /E, ((4.18)) 

as functions of RI. 

Fig. 4. 

5. Let us examine the case when the function Q(R) is given by the 

formula 

P WI = 
(y-1)N~+(y1-1)u2 

(y - 1) (-~I - 1) H (a2 + .fP) 

where y, yi and D are constants, with y and y1 greater than one. 

Making use of the second of relations (1.3), we can find x(R): 

YI---Y 

(5.1) 

(5.2) 

We can write down the first few terms of the expansions of #(R) and 

x(R) in the neighborhood of R = 0: 
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(y-,2+-. .) R\ 

In the neighborhood of R = w we get the following expansions: 

Thus, the expression for the internal energy and the adiabatic equa- 

tion coincide, up to quantities of second order, with those for a gas 

with adiabatic exponent y and y1 respectively. 

The exact solution of (2.1) and the shock condition (1.10) are given 

respectively by 

Let us examine the set of integral curves for (1.17) in the region 

where P > 0 (see Section 22. The character of the singular points of 

II. I?) depends on the values of y and yl. 

For example, if y < 2, y1 >2, equation (I. 17) has the following 

singular points. 

The point A (V = 0.4~~1, R = 0) is 8 node. All integral curves enter 
this point with an infinite slope. The asymptotic formulas have the form 

8 
R = c (V - 0.4~~I)25 

where 

and C is an arbitrary constant. 

The point C (V = 0.4, R = 0) is a saddle point, the point D (V = 0.4, 
R= lx), a saddle point, the point B(Y = 0.4~~1, R = ~1, a saddle point, 

and the point E( V = 2/(3yl - 11, R = c*)), 4 node. 

Through the point B there passes only the integral curve (2.1); 

through C and B the straight line Y= 0.4. All the other integral curves 

leave point A and enter point I?. Xf y < 2 and yr < 2. the point C is a 
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saddle point, the point D is a node at which all the integral curves 

meet, and the point E does not belong to the region in which we are 

interested. 

T” 

I 

46 

26 

Fig. ‘. 

If y > 2 and yi > 2, E and C are nodes, while D is a saddle point. In 

addition, there appears the singular point F (V = 2/(3y - l), R = 01, a 

saddle point. Through the point F pass the straight line R = 0, and the 

integral curve which separates the integral curves emerging fromppoint 

A from the curves emerging from point C. All these curves enter point E. 

Since the character of the singular points A and B does not change in the 

cases under examination, the formulas (5.4) remain valid. 

Finally, if yl+=, equation (5.1) takes the form: c#(R)=b*/(a’+R*)R, 

where a and b are constants. 

In the case y < 
C and D are saddle 

points, while A, B 

Integral curves 

y = 1.4, yi = 3.2, 
h = 0, corresponds 

2 the points A and B (V = 0, R = 00) are nodes, while 

points; when y > 2 the points F and D are saddle 

and C are nodes. 

of equation (1.17), with #R) defined by (2. l), 
and a = 1. are drawn in Fig.5. The point A. at which 

to the center of symmetry. If y and y1 < 7. the 

integral curve which enters point A intersects curve (1. lo), which gives 

the shock condition, at some point (V2, R2). From the point (V = 0, 
R = RI) on the R-axis it is possible to get to an integral curve passing 

through A *on&y by means of a jump at point ( V2, R2). The motion along an 
integral curve from point ( V2, R2) to point A corresponds physically to 
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a motion of the fluid, which can be continued to the center of symmetry. 

Here, as in the case of a gas, the density and velocity vanish at the 

center, and the pressure is finite. 

When y > 2, the point C corresponds to the boundary of the cavity 

(A = const. p = 0). If y > 7 and y1 > 7, the integral curves, which give 

the solution to the problem of a strong blast, correspond to motions 

with an empty cavity, where the pressure and the density vanish; if 

2<y< 7, and y1 > 7, or if 2 < y1 < 7, and y > 7, some of these. 

integral curves correspond to motions which can be continued to the 

center of symmetry, and some to motions with a cavity. 

From formulas (1.20) and (5.1) we get the following expression for 

the parameter Ri: 

(Y - 1) (Y1- 1) R2 (R,2 + a2) 

R1=(Y--1)(Y1+1)R22+(Yl-1)(Y+l)a2 (5.5) 

Consequently. the parameter RI, belonging to the integral curves which 

give the solution to the problem of a strong blast, varies from zero to 

infinity. 

For the value R1 = 0, we get a solution of (2.3). which corresponds 

to the limiting case of an incompressible fluid with vanishing density 

and pressure. In this case, as for a gas with adiabatic exponent y, 

R2/R1 = (y + l)/(y - 1). From (5.5) it follows that the ratio AZ/R1 

varies as RI increases, taking on its minimum value (yi + l)/(y+- 1) 

when the density in front of the shock front is infinite, corresponding 

to which the density behind the front also tends to infinity, while the 

speed of the front and of the particles behind it goes to zero. 

In the neighborhood of the point A. the asymptotic formulas (5.4) 

for R, P, and x coincide, except for multiplicative constants. with 

the analogous formulas for a gas with adiabatic exponent y. Since 

R2/R1 = (y + ll/(y - 1) only for RI = 0, the behavior of the functions 

v/v29 p/p2. and p/p2 near h = 0 and x = 1 for any non-vanishing RI, 

differs quantitatively somewhat from the behavior of these functions for 

gases with adiabatic exponents y and yl. 

On Fig.6 are shown the graphs of v/v2 and p/p2 as functions of A, for 

an initial value of RI = 1.862. The constant U in the energy formula 

turned out to have the value 0.533. For h = 0 p/p2 = 0.3444, while for 

A = 0.5204 p/p, is at its minimum, and is equal to 0.2703. 

6. It is easy to see that the case 4(R) = a = const can be reduced to 
the case 4(R) = 1. 
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as 

a 06 a8 

Fig. 6. 

The exact solution of (2.1) and the shock condition (1.10) are given 

in this case by the formulas 

J&1’ 1’2 
0.4 - I’ ’ II2 = 2 (0.4 - V,) (6.1) 

From the equation (3.1) it is clear in this case that there is no 

real sonic line. The set of integral curves for the case 4(R) = lgiven 

in Fig.7. 

Fig. 7. 

In the neighborhood of the singular point 0 (V = 0. !I = 0) the equa- 

tion (1.17) can be written in the following form: 
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dR - 2R= (5V + R) 
-_. = 
dV 15v2 - 16VR f 4R2. (6.2) 

This is a compound singularity, which consists of a saddle point and 

a node. 

The point C (V= 0.4, A = 0) is a node. The asymptotic formulas for 

V, P, and h, in the neighborhood of C have the form: 

V - 0.4 -g exp (- &) , P = 0.2C1 exp (- $1 , (6.3)) 

where Ci is an arbitrary constant. Thus, this point corresponds to the 

boundary of the cavity. 

The point D (V = 0.4, R = 00 ) is a node, at which all the integral 

curves leaving C meet. At the point (V = l/10, R = l/6) one of these 

curves is tangent to the second of curves (6.1); curves with a large 

value of the constant C,, which enters formula (6.3), cross this curve 

at two points, From the point (V = 0, R = R,) it is possible to reach 

the integral curve which enters the point 0, corresponding to the center 

of symmetry, or the point C, corresponding to the boundary of the cavity, 

only by means of a jump. 

The parameter RI varies from 0 to 0.5. 

As in the previous case (Section 5), the value RI = 0 corresponds to 

the solution (2.3). 

The pressure and the density vanish at every point of the integral 

curve; the shock wave immediately goes to infinity. 

If RI = 0.5, the density behind the shock front becomes infinite, 

while the speed of the shock wave goes to zero. 

Fig.8 shows the graphs of v/v~, p/p2, and p/p2 as functions of h. 

The curves 1. 2 and 3, for the velocity, density and pressure respect- 
ively, correspond to the value RI = 0.125, curves 4, 5 and 6 to 

RI = 0.375. The value RI = 0.125 corresponds to the integral curve which, 

at the point (V = l/10, R = l/6), is tangent to the second of the 

curves (6.11, and which enters point C. There results a motion with a 

cavity, expanding from the center of symmetry, on the boundary of which 

both the pressure and the density vanish. 

In the second case the solution can be continued to the center of 

symmetry, where the velocity, density and pressure all vanish. 

The constant o! has the values 0.00274 and 0.05502 for the first and 

second case , respectively. 
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Fig. 8. 

7. In the general case of a point blast, the boundary conditions con- 

tain the three-dimensional parameters po, E,, and the initial pressure, 

Pl ’ of the undisturbed medium. If this pressure, p,, is sufficiently 

small to be neglected, we obtain a problem with self-similar solu- 

tions. 

We will now try to estimate mOre precisely the distance which a shock 

wave can travel before the self-similar solution becomes inaccurate. 

Instead of (1.6) let us write the exact shock conditions: 

- 2s = p2@2 -4, P1C3 + Pl = pn 0% - 4” + p2 

5 cs + $: + .+ [JJ) = ; (02 -C)“_t-; + %(-$H) 
(7.1) 

Eliminating p1 from these equations by means of p1=ppoa12 x(R, )/x’(l$) 
and introducing a new variable 7 =a12/c2, where al is the sound speed 

in the undisturbed medium, while x(R) is determined from f l. 3), we will 

get the following expressions for the density, velocity, and pressure 

as functions of the shock speed, c, the quantity q, the density pi, in 

front of the shock wave, and the density pn : 

(7.2) 

Making use of -(7.2) for a given function q%‘) and a given value of 
R,, we can find a value q : qot for which the relative error in com- 

puting the characteristics of the motion on the shock wave, u2, pz, pz, 

by means of the formulas (1.21) and (7.21, is, for example, 0.05. 
Consequently, in solving the problem of a blast for q< qo, the shock 



Strong point-blasts in a compressible medium 19 

conditions can be taken in the form (1.211, i.e. the self-similar 
solutions can be used for values of r2 not exceeding 

qR,) (f:)“’ Ii+ 

1 / 

For the value of R, examined in Section 4, the quantity qO has the 
value 0.072.. 

We feel it our duty to express our deep gratitude to L.I. Sedov for 
his direction of this work. 
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